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Abstract
We consider classical many-particle systems of identical particles and
distinguishable particles. For these types of systems we construct a new
representation of a solution to the initial value problem to the BBGKY
hierarchy of equations, namely, in the form of an expansion over particle
clusters whose evolution is governed by the cumulants (semi-invariants) of the
evolution operator of the corresponding particle cluster. Such a representation
of solutions enables us to describe the cluster nature of the evolution of infinite
particle systems with different symmetry properties in detail. A convergence
of the constructed expansions is investigated in the suitable functional spaces.

PACS numbers: 05.20.Dd, 45.50.Jf

1. Introduction

The structure of expansions for solutions of the initial value problem of the BBGKY hierarchy
depends on the symmetry properties of many-particle systems which are connected with the
indistinguishability property of identical particles. Classical systems of identical particles
are described by observables and states which are symmetric functions with respect to
permutations of their arguments (the phase space coordinates of every particle) [1, 2]. In
the quantum case, we have additional symmetry properties related to the nature of identical
particles (Fermi and Bose particles). Classical many-particle systems can also consist of
distinguishable particles. In this case, many-particle systems are described by observables and
states which are non-symmetric functions of their arguments (non-symmetrical many-particle
systems).

In this paper, we construct a new representation of the solutions of the initial value problem
of the BBGKY hierarchy in the form of an expansion over particle clusters whose evolution
is governed by the cumulant (semi-invariant) of the evolution operator of the corresponding
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particle cluster for the symmetric and non-symmetric classical systems. We give existence
and uniqueness results for the initial value problem in the space of sequences of integrable
functions.

We note that a well-known example of initial data is the Gibbs equilibrium state [1]. The
equilibrium distribution functions belong to the space of sequences of continuous functions
bounded with respect to the configuration variables and momentum variables are Maxwellian
distributions. As is known [1, 2], for initial data from this space there is an involved problem
which involves the existence of the divergent integrals over configuration variables in each
term of the solution expansion. Exactly, the stated cumulant nature of the solution expansions
guarantees the compensation of the divergent integrals. A detailed analysis of this problem
will be given in a separate paper.

2. Cluster expansions of evolution operators of symmetrical many-particle systems

At first we will formulate some definitions and preliminary facts about the dynamics of finite
many-particle systems.

Let us introduce a set of measurable functions fn(x1, . . . , xn) defined on the phase space
R

νn × R
νn, ν � 1, of an n-particle system, which are invariant under permutations of the

arguments x1, . . . , xn. The dynamics of a classical system of a finite number n of particles is
described by the following evolution operator:

(Sn(t)fn)(x1, . . . , xn) ≡ Sn(t, x1, . . . , xn)fn(x1, . . . , xn)

= fn(X1(t, x1, . . . , xn), . . . , Xn(t, x1, . . . , xn)), (1)

where Xi(t, x1, . . . , xn), i = 1, . . . , n, is a solution of the initial value problem for the
Hamilton equations of a system of n particles with initial data Xi(0, x1, . . . , xn) = xi ≡
(qi, pi) ∈ R

ν × R
ν, ν � 1, i = 1, . . . , n, (Sn(0) = I is the identity operator). In what follows

we will assume that the interaction potential � satisfies the necessary conditions which
guarantee the existence of global in time solutions of the Hamilton equations. Examples of
such conditions are given in [1, 2].

Operator (1) is defined, e.g., in the space of integrable functions fn ∈ L1(Rνn×R
νn) ≡ L1

n

[1] and, in particular, this operator is a strongly continuous one-parametric group of isometric
operators in the space L1

n, i.e., ‖Sn(t)‖L1
n
= 1.

On the subspace fn ∈ L1
n,0 ⊂ L1

n of the continuously differentiable functions with
compact supports the infinitesimal generator Ln of the evolution operator (1) is given by the
Poisson bracket

d

dt
Sn(t)fn|t=0 = Lnfn ≡ (

L0
n + Lint

n

)
fn, (2)

where

L0
n =

n∑
i=1

L0(xi) =
n∑

i=0

〈
pi,

∂

∂qi

〉
,

Lint
n =

n∑
i<j=1

Lint(xi, xj ) =
n∑

i<j=1

〈
∂

∂qi

�(qi − qj ),

(
∂

∂pj

− ∂

∂pi

)〉

and 〈· , ·〉 is a scalar product.
We consider the initial value problem of the BBGKY hierarchy of equations for a classical

system of identical particles [1, 2]. If F(0) = (1, F1(0, x1), . . . , Fs(0, x1, . . . , xs), . . .)

is a sequence of initial s-particle distribution functions Fs(0, x1, . . . , xs) symmetric in
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xi ≡ (qi, pi) ∈ R
ν × R

ν, ν � 1, then a solution F(t) = (1, F1(t, x1), . . . , Fs(t, x1, . . . ,

xs), . . .) of the Cauchy problem for the BBGKY hierarchy is represented as the expansion

Fs(t, x1, . . . , xs) =
∞∑

n=0

1

n!

∫
(Rν×R

ν )n
dxs+1 · · · dxs+n

×A(n)(t, x1, . . . , xs, xs+1, . . . , xs+n)Fs+n(0, x1, . . . , xs+n), s � 1, (3)

where the evolution operators A(n)(t) are defined as follows. Let (x1, . . . , xs) ≡ Y , (Y, xs+1,

. . . , xs+n) ≡ X, i.e., (xs+1, . . . , xs+n) = X\Y , and let |X| = |Y | + |X\Y | = s + n denote the
number of elements of the set X. Then we have

A(|X\Y |)(t, Y,X\Y ) =
∑

P :{Y,X\Y }=⋃
i

Xi

(−1)|P |−1(|P | − 1)!
∏

Xi⊂P

S|Xi |(−t, Xi), |X\Y | � 0

(4)

where
∑

P is the sum over all possible decompositions of the set {Y,X\Y } into |P | nonempty
mutually disjoint subsets Xi ⊂ {Y,X\Y }, Xi ∩ Xj = ∅, and the set Y completely belongs to
one of the subsets Xi.

The simplest examples of evolution operators A(n)(t) (4) have the form

A(0)(t, Y ) = Ss(−t, Y ),

A(1)(t, Y, xs+1) = Ss+1(−t, Y, xs+1) − Ss(−t, Y )S1(−t, xs+1),

A(2)(t, Y, xs+1, xs+2) = Ss+2(−t, Y, xs+1, xs+2) − Ss+1(−t, Y, xs+1)S1(−t, xs+2)

− Ss+1(−t, Y, xs+2)S1(−t, xs+1) − Ss(−t, Y )S2(−t, xs+1, xs+2)

+ 2!Ss(−t, Y )S1(−t, xs+1)S1(−t, xs+2).

Evolution operators (4) are solutions of the following recursion relations:

S|X|(−t, Y,X\Y ) =
∑

P :{Y,X\Y }=⋃
i

Xi

∏
Xi⊂P

A(|Xi |−1)(t, Xi), |X\Y | � 0, (5)

where
∑

P is the sum as above in formula (4). For example,

S|Y |(−t, Y ) = A(0)(t, Y ),

S|Y |+1(−t, Y, xs+1) = A(1)(t, Y, xs+1) + A(0)(t, Y )A(0)(t, xs+1),

S|Y |+2(−t, Y, xs+1, xs+2) = A(2)(t, Y, xs+1, xs+2) + A(1)(t, Y, xs+1)A(0)(t, xs+2)

+ A(1)(t, Y, xs+2)A(0)(t, xs+1) + A(0)(t, Y )A(1)(t, xs+1, xs+2)

+ A(0)(t, Y )A(0)(t, xs+1)A(0)(t, xs+2).

Really, in the general case, the following lemma is true.

Lemma 1. A solution of the recurrence relations (5) is determined by the relation

A(|X\Y |)(t, Y,X\Y ) =
∑

P :{Y,X\Y }=⋃
i

Xi

(−1)|P |−1(|P | − 1)!
∏

Xi⊂P

S|Xi |(−t, Xi),

n = |X\Y | � 0, (6)

where
∑

P is the sum over all possible decompositions of the set {Y,X\Y } into |P | nonempty
mutually disjoint subsets Xi ⊂ {Y,X\Y }, Xi ∩ Xj = ∅, and the set Y completely belongs to
one of the subsets Xi.
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Proof. Consider the set of sequences � = (�0, �1(x1), . . . , �n(x1, . . . , xn), . . .) of operators
�n of type (1) (�0 is an operator that multiplies a function by an arbitrary number). In this
set, we introduce the tensor ∗-product

(�1 ∗ �2)|X|(X) =
∑
Y⊂X

(�1)|Y |(Y )(�2)|X\Y |(X\Y ),

where
∑

Y⊂X is the sum over all subsets Y of the set X ≡ (x1, . . . , xn). A similar product is
used in investigating equilibrium correlation functions by the algebraic method [1]. We
also introduce the following notation: (A(t))1+n(Y, xs+1, . . . , xs+n) = A(n)(t, Y,X\Y ) ≡
A|Y |+n(t, Y,X\Y ).

By the definition of the ∗-product for the sequence A(t) = (0, (A(t))1(Y ), (A(t))2

(Y, xs+1), . . .), the following equality is true:∑
P :{Y,X\Y }=⋃

i

Xi

∏
Xi⊂P

A(|Xi |−1)(t, Xi) = (Exp∗A(t))1+n(Y,X\Y ), n = |X\Y | � 0,

where Exp∗ is defined as the ∗-exponential mapping, i.e.,

Exp∗� = 1 +
∞∑

n=1

1

n!
� ∗ · · · ∗ �︸ ︷︷ ︸

n

,

� ≡ (0, �1, . . . , �n, . . .) and 1 ≡ (1, 0, 0, . . .) is the unit sequence.
As a result, we can represent the recurrence relations (5) in the form

1 + S(−t) = Exp∗A(t),

where the elements of the sequence S(t) = (0, (S(t))1(Y ), (S(t))2(Y, xs+1), . . .) are the
evolution operators (S(t))1+n(Y, xs+1, . . . , xs+n) ≡ S|Y |+n(t, Y, xs+1, . . . , xs+n).

Similarly, defining a mapping Ln∗ on the sequences � ≡ (0, �1, . . . , �n, . . .) as the
mapping inverse to Exp∗, i.e.,

Ln∗(1 + S(−t)) =
∞∑

n=1

(−1)n−1

n
� ∗ · · · ∗ �︸ ︷︷ ︸

n

,

we obtain∑
P :{Y,X\Y }=⋃

i

Xi

(−1)|P |−1(|P | − 1)!
∏

Xi⊂P

S|Xi |(−t, Xi)

= Ln∗(1 + S(−t))1+n(Y,X\Y ), n = |X\Y | � 0.

As a result, relation (6) can be rewritten in the form

A(t) = Ln∗(1 + S(−t)), (7)

and, therefore, expression (6) is a solution of relation (5). �

We note that the recursion relations given in (6) are typical cluster expansions [3] for
the evolution operator S|X|(−t, Y,X\Y ) defined by (1). Thus, operators A(|X\Y |)(t, Y,X\Y )

(4) have the meaning of the cumulants (semi-invariants) of the operator S|X|(−t, Y,X\Y )

describing the evolution of a system of a finite number |X| of particles, i.e., they describe
what noninteracting clusters of particles may form a system of the corresponding number of
particles in the process of evolution, provided that a cluster of |Y | particles evolves as a single
cluster.

We remark that the connections between different representations of the BBGKY
hierarchy solutions are considered in [1, 3]. For the first time several first terms of the
expansions (3) and (4) for the one-particle distribution function were determined in [4, 5].
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3. Cumulant representation of the BBGKY hierarchy solutions for symmetrical
many-particle systems

We will consider the problem of the convergence of the expansions (3) and (4) in the space of
sequences of integrable functions and prove the existence solution theorem for the initial data
from this space.

Let L1
α = ⊕∞

n=0 αnL1
n be the Banach space of sequences f = (f0, f1(x1), . . . , fn(x1, . . . ,

xn), . . .) of symmetric integrable functions fn(x1, . . . , xn) defined on the phase space
R

νn × R
νn with the norm

‖f ‖L1
α

=
∞∑

n=0

αn‖fn‖L1
n
=

∞∑
n=0

αn

∫
(Rν×R

ν )n
dx1 · · · dxn|fn(x1, . . . , xn)|,

where α > 1 is a positive integer; L1
α,0 ⊂ L1

α is the subspace of finite sequences of continuously
differentiable functions with compact supports.

Since, on the sequences of integrable functions f ∈ L1
α the annihilation operator [1, 2]

(af )n(x1, . . . , xn) =
∫

R
ν×R

ν

dxn+1fn+1(x1, . . . , xn, xn+1) (8)

is defined, in view of (7) and (8) expressions (3) and (4) take the following form in the space L1
α

F (t) = eaA(t)F (0) = ea
Ln∗(1 + S(−t))F (0). (9)

For the cumulants A(n)(t) the following lemma is true in the space L1
s+n.

Lemma 2. If F(0) ∈ L1
s+n, then the following estimate is valid:

‖A(n)(t)Fs+n(0)‖L1
s+n

� n! en+2‖Fs+n(0)‖L1
s+n

. (10)

Proof. According to the Liouville theorem [1, 2], we get

‖A(n)(t)Fs+n(0)‖L1
s+n

=
∫

dx1 · · · dxs+n|
∑

P :{Y,X\Y }=⋃
i

Xi

(−1)|P |−1(|P | − 1)!

×
∏

Xi⊂P

S|Xi |(−t, Xi)Fs+n(0, Y,X\Y )|

�
∑

P :{Y,X\Y }=⋃
i

Xi

(|P | − 1)!‖Fs+n(0)‖L1
s+n

=
n+1∑
k=1

s(n + 1, k)(k − 1)!‖Fs+n(0)‖L1
s+n

,

where s(n + 1, k) are Stirling numbers of the second kind. Using the representation

s(n + 1, k) = 1

k!

∑
r1, . . ., rk �1

r1 + · · · + rk=n+1

(n + 1)!

r1! · · · rk!
,

for the numbers s(n + 1, k), we get
n+1∑
k=1

s(n + 1, k)(k − 1)! =
n+1∑
k=1

1

k

∑
r1, . . ., rk�1

r1 + · · · + rk=n+1

(n + 1)!

r1! · · · rk!
�

n+1∑
k=1

kn

� n!
n+1∑
k=1

ek � n! en+2,

which yields estimate (10). �
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By virtue of inequality (10), the functions defined by (3) (or (9)) satisfy the following
estimate for α > e :

‖F(t)‖L1
α

� cα‖F(0)‖L1
α
, (11)

where cα = e2
(
1 − e

α

)−1
is a constant.

Note that the parameter α can be interpreted as a quantity inverse to the density of the
system, 1/v (the average number of particles in a unit volume). Indeed, renormalizing the
functions Fs(0) = F̃ s(0)/vs, we obtain expansion (3) in the parameter 1/v. In this case, under
the condition

1

v
< e−1,

the integrable functions F̃ s(0) ∈ L1
s satisfy the following inequality:

‖F̃ (t)‖L1
α

� c

(
1

v

)
‖F̃ (0)‖L1

α
,

where c
(

1
v

) = e2
(
1 − e

v

)−1
is a constant.

Thus, according to estimate (11) the following existence theorem is true.

Theorem 1. If F(0) ∈ L1
α is a sequence of nonnegative functions, then for α > e, and t ∈ R

1,
there exists a unique solution to the initial value problem for the BBGKY hierarchy, namely,
the sequence F(t) ∈ L1

α of nonnegative functions Fs(t) defined by

F|Y |(t, Y ) =
∞∑

n=0

1

n!

∫
d(X\Y )

∑
P :{Y,X\Y } ⋃

i

Xi

(−1)|P |−1(|P | − 1)!

×
∏

Xi⊂P

S|Xi |(−t, Xi)F|X|(0, Y,X\Y ), (12)

where we have the same notation as for (4). This solution is a strong solution for F(0) ∈ L1
α,0

and a weak one for arbitrary initial data.

Proof. Let us show that expansion (3) defined in L1
α is a strong solution of the Cauchy problem

to the BBGKY hierarchy. To do this we first differentiate the functions F|Y |(t, Y ) with respect
to time using point-by-point convergence. Let F(0) ∈ L1

α,0, then, according definitions (2)
and (4), for each fixed point Y we obtain

d

dt
A(n)(t, Y,X\Y )F|X|(0, X) =

∑
P :{Y,X\Y }=⋃

i

Xi

(−1)|P |−1(|P | − 1)!

×
∑
Xi⊂P

(−L|Xi |(Xi))
∏

Xi⊂P

S|Xi |(−t, Xi)F|X|(0, X).

In view of the equality∑
Xi⊂P

L|Xi |(Xi) = L|Y ⋃
X\Y | −

∑
Xj1 ,Xj2 ⊂P

Lint
|Xj1

⋃
Xj2 |

(
Xj1;Xj2

)
,

where

Lint
|Xj1

⋃
Xj2 |

(
Xj1;Xj2

) =
|Xj1 |∑
i1=1

|Xj2 |∑
i1=1

Lint
(
xi1 , xi2

)
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and the validity of the following identity:∫
d(X\Y )Lint

|Xj1

⋃
Xj2 |

(
Xj1;Xj2

) ∏
Xi⊂P

S|Xi |(−t, Xi)F|X|(0, X) = 0,

which is a result of an integration by parts on momentum variables of the integrant according
to definition (2) of the operator Lint

|Xj1

⋃
Xj2 | and since F(0) ∈ L1

α,0 then for the integrant we
have

d

dt
A(n)(t, Y,X\Y )F|X|(0, X) = −L|Y ⋃

X\Y |A(n)(t, Y,X\Y )F|X|(0, X).

Therefore, for solution expansion (3) we derive

d

dt
F (t) = ea(−L)A(t)F (0) = ea(−L) e−a eaA(t)F (0) = ea(−L) e−aF(t),

i.e., the sequence F(t) satisfies the following hierarchy of equations (BBGKY hierarchy):

d

dt
F (t) = ea(−L) e−aF(t).

If f ∈ L1
α,0, for the pair interaction potential �, the following identity is valid [2]

[[L, a], a]f = 0, where [· , ·] is a commutator of operators. Then for the generator ea(−L) e−a

of the BBGKY hierarchy of equations we have

ea(−L) e−a = −L + [L, a],

where

([L, a]f )n =
∫

dxn+1

n∑
i=1

〈
∂

∂qi

�(qi − qn+1),
∂

∂pi

〉
fn+1,

i.e., for the smooth interaction potential we derive the accepted form of the BBGKY hierarchy.
According to the well-known theorem of functional analysis [2] function F(t) is differentiable
in the norm of the space L1

α for F(0) ∈ L1
α,0 and thus, for these initial data the corresponding

Cauchy problem has a unique strong solution defined by expansions (3) and (4).
A statement about the nonnegativity of solution (3) follows from the fact that the operator

A(n)(t, Y,X\Y ) is a solution of recurrence relations (5) and from definition (1) of the evolution
operator S|X|(−t, Y,X\Y ). �

4. Cluster expansions of evolution operators of non-symmetrical many-particle systems

We consider a one-dimensional system of identical particles interacting with their nearest
neighbours via the hard-core pair potential �. For the configurations (qi ∈ R

1 is the
position of the centre of particle i) of such a system the following inequalities must be
satisfied: σ + qi � qi+1, where σ is the length of a particle, and the natural way to
number the particles is to number by means of the integers from the set Z\{0}. The
set Wn1+n2 ≡ {(q−n2 , . . . , q−1, q1, . . . , qn1) ∈ R

n1+n2 | σ + qi > qi+1 for at least one
pair (i, i + 1) ∈ ((−n2,−n2 + 1), . . . , (−1, 1), . . . , (n1 − 1, n1))} is the set of forbidden
configurations. The Hamiltonian of the n = n1 + n2 particle system

Hn =
∑

i∈(−n2,...,−1,1,...,n1)

p2
i

2
+

∑
(i,i+1)∈((−n2,−n2+1),...,(n1−1,n1))

�(qi − qi+1)

is a function non-symmetrical [6, 7] with respect to permutations of the arguments xi ≡
(qi, pi) ∈ R

1 × R
1.
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If F(0) = {
Fs

(
0, x−s2 , . . . , xs1

)}
s=s1+s2�0 is a sequence of initial s-particle distribution

functions Fs

(
0, x−s2 , . . . , x−1, x1, . . . , xs1

)
, F0 = 1, then a solution of the Cauchy problem for

the BBGKY hierarchy F(t) = {
Fs

(
t, x−s2 , . . . , xs1

)}
s=s1+s2�0 is represented as the expansion

Fs

(
t, x−s2 , . . . , xs1

) =
∞∑

n=0

∑
n=n1+n2
n1, n2�0

∫
(R1×R

1)n1+n2

dx−(n2+s2) · · · dx−(s2+1)

× dxs1+1 · · · dxs1+n1

(
A(n2,n1)(t)Fs+n(0)

)(
x−(n2+s2), . . . , xs1+n1

)
, (13)

where the evolution operator A(n2,n1)(t) is defined in the following way. Let
(
x−s2 , . . . , xs1

) ≡
Y ,

(
x−(n2+s2), . . . , xs1+n1

) ≡ X. The sets X and Y are partially ordered sets, because σ + qi �
qi+1. If the subset Y of the set X is treated as one element similar to

(
x−(n2+s2), . . . , x−(s2+1),

xs1+1, . . . , xs1+n1

)
, then for such a partially ordered set we use the notation XY . Symbol

|Y | = s = s1 + s2 denotes the number of elements of the set Y and, thus, |XY | = n1 + n2 + 1.
Then we have

A(n2,n1)(t, XY ) =
∑

P :XY =⋃
i

Xi

(−1)|P |−1
∏

Xi⊂P

S|Xi |(−t, Xi), (14)

where n1 + n2 = n � 0,
∑

P is the sum over all ordered decompositions of the partially
ordered set XY into |P | nonempty partially ordered subsets Xi ⊂ XY , which are mutually
disjoint Xi

⋂
Xj = ∅, and the set Y completely belongs to one of the subsets Xi. As above,

in formula (14) the evolution operator S|X|(−t, X) describes the dynamics of a system of a
finite number n = n1 + n2 of particles [2, 6]. The simplest examples of evolution operators
(14) have the form

A(0,0)(t, Y ) = Ss(−t, Y ),

A(0,1)

(
t, Y, xs1+1

) = Ss+1
(−t, Y, xs1+1

) − Ss(−t, Y )S1
(−t, xs1+1

)
,

A(1,0)

(
t, x−(s2+1), Y

) = Ss+1
(−t, x−(s2+1), Y

) − Ss(−t, Y )S1
(−t, x−(s2+1)

)
,

A(0,2)

(
t, Y, xs1+1, xs1+2

) = Ss+2
(−t, Y, xs1+1, xs2+2

) − Ss+1
(−t, Y, xs1+1

)
S1

(−t, xs1+2
)

− Ss(−t, Y )S2
(−t, xs1+1, xs1+2

)
+ Ss(−t, Y )S1

(−t, xs1+1
)
S1

(−t, xs1+2
)
,

A(1,1)

(
t, x−(s2+1), Y, xs1+1

) = Ss+2
(−t, x−(s2+1), Y, xs1+1

)
− S1

(−t, x−(s2+1)

)
Ss+1

(−t, Y, xs1+1
) − Ss+1

(−t, x−(s2+1), Y
)
S1

(−t, xs1+1
)

+ S1
(−t, x−(s2+1)

)
Ss(−t, Y )S1

(−t, xs1+1
)
.

The evolution operators (14) are solutions of the following recursion relations:

S|X|(−t, X) =
∑

P :XY =⋃
i

Xi

∏
Xi⊂P

A(i2,i1)(t, Xi), |XY | − 1 � 0, (15)

where i1 + i2 = i = |Xi | − 1 � 0, and
∑

P is the sum given above in formula (14). For
example,

S|Y |(−t, Y ) = A(0,0)(t, Y ),

S|Y |+1
(−t, Y, xs1+1

) = A(0,1)

(
t, Y, xs1+1

)
+ A(0,0)(t, Y )A(0,0)

(
t, xs1+1

)
,

S|Y |+1
(−t, x−(s2+1), Y

) = A(1,0)

(
t, x−(s2+1), Y

)
+ A(0,0)(t, Y )A(0,0)

(
t, x−(s2+1)

)
,

S|Y |+2
(−t, Y, xs1+1, xs2+2

) = A(0,2)

(
t, Y, xs1+1, xs1+2

)
+ A(0,1)

(
t, Y, xs1+1

)
A(0,0)

(
t, xs1+2

)
+ A(0,0)(t, Y )A(0,1)

(
t, xs1+1, xs1+2

)
+ A(0,0)(t, Y )A(0,0)

(
t, xs1+1

)
A(0,0)

(
t, xs1+2

)
,
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S|Y |+2
(−t, x−(s2+1), Y, xs1+1

) = A(1,1)

(
t, x−(s2+1), Y, xs1+1

)
+ A(0,0)

(
t, x−(s2+1)

)
A(0,1)

(
t, Y, xs1+1

)
+ A(1,0)

(
t, x−(s2+1), Y

)
A(0,0)

(
t, xs1+1

)
+ A(0,0)

(
t, x−(s2+1)

)
A(0,0)(t, Y )A(0,0)

(
t, xs1+1

)
.

The recursion relations (15) are cluster expansions for the evolution operator of non-
symmetrical particle systems. We note that the structure of cluster expansion (15) is essentially
different from the structure of corresponding expansion (5) for the symmetrical systems.

As above, the structure of the cluster expansions (15) can be represented in a more explicit
and compact form. In the set of double sequences � = {�n1+n2(x−n2 , . . . , xn1)}n1+n1=n�0 of
operators �n1+n2 we introduce the following tensor �-product:

(�1 � �2)|X|(X) =
∑
Y⊂X

(�1)|Y |(Y )(�2)|X\Y |(X\Y ),

where
∑

Y⊂X is the sum over all partially ordered subsets Y of the partially ordered set
X ≡ (

x−n2 , . . . , xn1

)
.

Then expression (14) for the cumulants of non-symmetrical systems can be rewritten in
the form

A(t) = 1 − (1 + S(−t))−1� , (16)

where A(t) = (0, (A(t))1(Y ), . . . , (A(t))1+n1+n2(XY ), . . .) and (A(t))1+n1+n2

(
x−(n2+s2), . . . ,

x−(s2+1), Y, xs1+1, . . . , xs1+n1

) ≡ (A(t))1+n(XY ) = A(n2,n1)(t, XY ). A mapping 1 − (1 + ·)−1� is
defined then by the formula

1 − (1 + �)−1� =
∞∑

n=1

(−1)n−1 � � · · · � �︸ ︷︷ ︸
n(

� ≡ (0, �1, . . . , �1+n1+n2 , . . .
)

and 1 = (1, 0, 0, . . .) is the unit sequence).
The cluster expansions (15) for the evolution operator of non-symmetrical particle systems

have the form

1 + S(−t) = (1 − A(t))−1� ,

where (1 − ·)−1� is defined as the �-resolvent:

(1 − �
)−1� = 1 +

∞∑
n=1

� � · · · � �︸ ︷︷ ︸
n

.

5. Cumulant representation of the BBGKY hierarchy solutions for non-symmetrical
many-particle systems

We consider the problem of the convergence of expansions (13) and (14) in the space of
sequences of integrable functions. Let

L1
α =

∞⊕
n=0

⊕
n=n1+n2

n1, n2�0

αn1+n2L1
n1+n2

be the Banach space of double sequences f = {
fn

(
x−n2 , . . . , xn1

)}
n=n1+n2�0 of integrable

functions fn

(
x−n2 , . . . , xn1

)
defined on the phase space R

n × (Rn\Wn) [2, 7] with the norm

‖f ‖L1
α

=
∞∑

n=0

∑
n=n1+n2

n1, n2�0

αn1+n2

∫
(R1×R

1)n1+n2

dx−n2 · · · dxn1

∣∣fn1+n2

(
x−n2 , . . . , xn1

)∣∣,
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where α > 1 is a number; L1
α,0 ⊂ L1

α is the subspace of finite sequences of continuously
differentiable functions with compact supports.

Since, on the sequences of integrable functions f ∈ L1
α the operators

(a(+)f )n
(
x−n2 , . . . , xn1

) =
∫

R
1×R

1
dxn1+1fn+1

(
x−n2 , . . . , xn1 , xn1+1

)
,

(a(−)f )n
(
x−n2 , . . . , xn1

) =
∫

R
1×R

1
dx−(n2+1)fn+1

(
x−(n2+1), x−n2 , . . . , xn1

)
are defined, in view of (16) expansion (13) takes the following form in the space L1

α:

F(t) = (1 − a(+))
−1(1 − a(−))

−1A(t)F (0)

= (1 − a(+))
−1(1 − a(−))

−1(1 − (1 + S(−t))−1� )F (0).

For the cumulants A(n2,n1)(t) the following lemma is true in the space L1
s+n.

Lemma 3. If F(0) ∈ L1
s+n, then the following estimate is valid:

‖A(n2,n1)(t)Fs+n(0)‖L1
s+n

� 2n1+n2‖Fs+n(0)‖L1
s+n

.

Proof. According to the Liouville theorem [2], we get

‖A(n2,n1)(t)Fs+n(0)‖L1
s+n

=
∫

dX|
∑

P :XY =⋃
i

Xi

(−1)|P |−1
∏

Xi⊂P

S|Xi |(−t, Xi)Fs+n(0, X)|

�
∑

P :XY =⋃
i

Xi

‖Fs+n(0)‖L1
s+n

= 2n1+n2‖Fs+n(0)‖L1
s+n

,

where the last equality follows from the fact that the number of ordered decompositions
P : XY = ⋃

i Xi of the set XY consisting of n1 + n2 + 1 elements equals 2n1+n2 . �

By virtue of this inequality, the functions F(t) defined by (13) and (14) satisfy the
following estimate for α > 2;

‖F(t)‖L1
α

� c2
α‖F(0)‖L1

α
, (17)

where cα = (
1 − 2

α

)−1
is a constant.

Thus, according to (17) the following existence theorem holds.

Theorem 2. If F(0) ∈ L1
α is a sequence of nonnegative functions, then for α > 2, and t ∈ R

1,

there exists a unique strong solution of the initial value problem for the BBGKY hierarchy for
F(0) ∈ L1

α,0, namely, the sequence F(t) ∈ L1
α of nonnegative functions Fs1+s2(t) defined by

F|Y |(t, Y ) =
∞∑

n=0

∑
n = n1 + n2

n1, n2 � 0

∫
(R1×R

1)n1+n2

d(X\Y )
∑

P :XY =⋃
i

Xi

(−1)|P |−1

×
∏

Xi⊂P

S|Xi |(−t, Xi)F|X|(0, X),

where we have the same notation as for relations (12).

Proof. The statement of the theorem is proved similar to theorem 1. Indeed, if F(0) ∈ L1
α,0,

then for the integrant we have

d

dt
A(n)(t, Y,XY )F|X|(0, X) = −L|Y ⋃

XY |A(n)(t, Y,XY )F|X|(0, X).
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Therefore, for solution expansion (13) we derive

d

dt
F (t) = (1 − a(+))

−1(1 − a(−))
−1(−L)A(t)F (0)

= (1 − a(+))
−1(1 − a(−))

−1(−L)(1 − a(+))(1 − a(−))

×(1 − a(+))
−1(1 − a(−))

−1A(t)F (0)

= (1 − a(+))
−1(1 − a(−))

−1(−L)(1 − a(+))(1 − a(−))F (t),

i.e., the sequence F(t) satisfies the following hierarchy of equations (BBGKY hierarchy):

d

dt
F (t) = (1 − a(+))

−1(1 − a(−))
−1(−L)(1 − a(+))(1 − a(−))F (t).

If f ∈ L1
α,0, for the pair interaction potential �, the following identities are valid [2]

(a(∓))
n[L, a(±)]f = 0, n � 1, where [· , ·] is a commutator of operators. Then for the

generator (1 −a(+))
−1(1 −a(−))

−1(−L)(1 −a(+))(1 −a(−)) of the BBGKY hierarchy we have

(1 − a(+))
−1(1 − a(−))

−1(−L)(1 − a(+))(1 − a(−)) = −L + [L, a(+)] + [L, a(−)],

where

([L, a(+)]f )n =
∫

dxn1+1

〈
∂

∂qn1

�
(
qn1 − qn1+1

)
,

∂

∂pn1

〉
fn2+n1+1

+
∫ ∞

0
dPP

(
fn2+n1+1

(
t, x−n2 , . . . , xn1−1; qn1 , pn1 + P ; qn1 + σ, pn1

)
− fn2+n1+1

(
t, x−n2 , . . . , xn1; qn1 + σ, pn1 − P

))
,

([L, a(−)]f )n =
∫

dx−(n2+1)

〈
∂

∂q−n2

�
(
q−n2 − q−(n2+1)

)
,

∂

∂p−n2

〉
fn2+1+n1

+
∫ ∞

0
dPP

(
fn2+1+n1

(
t, q−n2 − σ, p−n2; q−n2 , p−n2 − P ; x−(n2−1), . . . , xn1

)
− fn2+1+n1

(
t, q−n2 − σ, p−n2 + P ; x−n2 , . . . , xn1

))
,

i.e., for the smooth interaction potential we derive the accepted form of the BBGKY hierarchy
[7]. According to the well-known theorem of functional analysis [2] function F(t) is
differentiable in the norm of the space L1

α for F(0) ∈ L1
α,0 and thus, for these initial data

the corresponding Cauchy problem has a unique strong solution defined by expansions (13)
and (14).
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